Rate of Strong Consistency of Two Nonparametric Density Estimators
نویسندگان
چکیده
منابع مشابه
Universal consistency of kernel nonparametric M-estimators
We prove that in the case of independent and identically distributed random vectors (Xi, Yi) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X, Y ). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y) = |y|...
متن کاملConsistency of Robust Kernel Density Estimators
The kernel density estimator (KDE) based on a radial positive-semidefinite kernel may be viewed as a sample mean in a reproducing kernel Hilbert space. This mean can be viewed as the solution of a least squares problem in that space. Replacing the squared loss with a robust loss yields a robust kernel density estimator (RKDE). Previous work has shown that RKDEs are weighted kernel density estim...
متن کاملWeighted Uniform Consistency of Kernel Density Estimators
Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded and positive. Let (t) be a positive continuous function such that ‖ f β‖∞ < ∞ for some 0 < β < 1/2. Under natural smoothness conditions, necessary and sufficient conditions for the sequence √ nhn 2| loghn | ‖ (t)(fn(t)−Efn(t))‖∞ to be stochastically bounded and to converge a.s. to a constant are obtained...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Nonparametric density deconvolution by weighted kernel estimators
JSM, Denver, 4 August 2008 – 3 / 23 We observe a univariate random sample Y1, . . . , Yn from a density g, where Yi = Xi + Zi (i = 1, . . . , n). Here X1, . . . , Xn are independent and identically distributed with unknown continuous density f , and the measurement errors Z1, . . . , Zn form a random sample from the continuous density η which we assume to be known. Our goal is to obtain a nonpa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1975
ISSN: 0090-5364
DOI: 10.1214/aos/1176343142